Partition Properties for Non-Ordinal Sets Under the Axiom of Determinacy

Jared Holshouser and Stephen Jackson

University of North Texas

BEST 2016

Finite Partition Properties

Definition

For κ a cardinal and $n \in \omega$, $[\kappa]^n = \{(\alpha_1, \dots, \alpha_n) \in \kappa^n : \alpha_1 < \dots < \alpha_n\}$. We also set $[\kappa]^{<\omega} = \bigcup_{n \in \omega} [\kappa]^n$.

Definition

Let κ, λ, δ be cardinals and $n \in \omega$.

- ▶ $[\kappa]_{\lambda}^{<\omega} \to [\kappa]_{\delta}^{<\omega}$ means: for every $f : [\kappa]^{<\omega} \to \lambda$, there is an $H \subseteq \kappa$ so that $|H| = \kappa$ and $|f[[H]^n]| \le \delta$ for all n.
- $\blacktriangleright \ [\kappa]_{<\lambda}^{<\omega} \to [\kappa]_{\delta}^{<\omega} \ \text{means:} \ [\kappa]_{\mu}^{<\omega} \to [\kappa]_{\delta}^{<\omega} \ \text{for all} \ \mu < \lambda.$
- κ is **Ramsey** iff $[\kappa]_2^{<\omega} \to [\kappa]_1^{<\omega}$.
- κ is **Rowbottom** iff $[\kappa]^{<\omega}_{<\kappa} \to [\kappa]^{<\omega}_{\omega}$.

Finite Partition Properties

Definition

 κ is **Jónsson** iff for every $f: [\kappa]^{<\omega} \to \kappa$, there is an $H \subseteq \kappa$ so that $|H| = \kappa$ and $f[[H]^{<\omega}] \neq \kappa$.

Remark

In, ZFC, Ramsey implies Rowbottom and Jónsson, and both Rowbottom and Jónsson imply the existence of $0^{\#}$ and thus that $V \neq L$.

Some Determinacy Notions

Definition

Recall that under the axiom of determinacy (AD), \mathbb{R} cannot be well-ordered. We define Θ to be least cardinal that \mathbb{R} does not surject onto.

Definition

Recall that $L(\mathbb{R})$ is the minimal universe of ZF which contains \mathbb{R} . Under large cardinal hypotheses, $L(\mathbb{R})$ is a model of AD, and its theory is absolute for very complex statements.

Some Determinacy Notions

Definition

Recall that under the axiom of determinacy (AD), \mathbb{R} cannot be well-ordered. We define Θ to be least cardinal that \mathbb{R} does not surject onto.

Definition

Recall that $L(\mathbb{R})$ is the minimal universe of ZF which contains \mathbb{R} . Under large cardinal hypotheses, $L(\mathbb{R})$ is a model of AD, and its theory is absolute for very complex statements.

Remark

It has been shown that under AD, ordinary cardinals have large cardinal properties in $L(\mathbb{R})$. For instance, ω_1 is a measurable cardinal.

Finite Partition Properties Under AD

In 2015, S. Jackson, R. Ketchersid, F. Schlutzenberg, and W.H. Woodin [3] proved the following:

Theorem (AD +
$$V = L(\mathbb{R})$$
, J/K/S/W)

Let $\kappa < \Theta$ be an uncountable cardinal. Then:

- 1. If $cf(\kappa) = \omega$, then κ is Rowbottom.
- 2. κ is Jónsson. In fact, if λ is a cardinal between ω_1 and κ , and $f: [\kappa]^{<\omega} \to \lambda$, then there is an $H \subseteq \kappa$ so that $|H| = \kappa$ and

$$|\lambda - f[[H]^{<\omega}]| = \lambda.$$

Finite Partition Properties Under AD

In 2015, S. Jackson, R. Ketchersid, F. Schlutzenberg, and W.H. Woodin [3] proved the following:

Theorem (AD +
$$V = L(\mathbb{R})$$
, J/K/S/W)

Let $\kappa < \Theta$ be an uncountable cardinal. Then:

- 1. If $cf(\kappa) = \omega$, then κ is Rowbottom.
- 2. κ is Jónsson. In fact, if λ is a cardinal between ω_1 and κ , and $f: [\kappa]^{<\omega} \to \lambda$, then there is an $H \subseteq \kappa$ so that $|H| = \kappa$ and

$$|\lambda - f[[H]^{<\omega}]| = \lambda.$$

In this paper, they asked whether or not there were non-ordinal Jónsson cardinals. In particular, is \mathbb{R} Jónsson?

Reframing the Question

Definition

For any set A, $[A]^n = \{s \subseteq X : |s| = n\}$ and $[A]^{<\omega} = \bigcup_{n \in \omega} [A]^n$.

Definition

Let A and B be infinite sets.

- ▶ (A, B) is **Ramsey** iff for any $f : [A]^{<\omega} \to B$, there is an $X \subseteq A$ so that |X| = |A| and f is constant on each $[X]^n$.
- ▶ (A, B) is **Rowbottom** iff for any $f : [A]^{<\omega} \to B$, there is an $X \subseteq A$ so that |X| = |A| and $f[[X]^{<\omega}]$ is countable.
- (A,B) is a **strong Jónsson pair** iff for any $f:[A]^{<\omega}\to B$, there is an $X\subseteq A$ so that |X|=|A| and

$$|B - f[[X]^{<\omega}]| = |B|.$$

Tools From Descriptive Set Theory

We use the following repeatedly.

Lemma (Fusion Lemma)

For each $s \in 2^{<\omega}$ let P_s be a perfect set so that

- 1. $\lim_{|s|\to\infty} diam(P_s) = 0$, and
- 2. for all $s \in 2^{<\omega}$, $P_{s \cap 1} \cap P_{s \cap 1} = \emptyset$ and $P_{s \cap 1}, P_{s \cap 1} \subseteq P_s$.

Then the fusion $P = \bigcup_{f \in 2\omega} \bigcap_{n \in \omega} P_{f|_n}$ of $\langle P_s : s \in 2^{<\omega} \rangle$ is a perfect set.

Theorem (Mycielski)

Suppose $C_n \subseteq (2^{\omega})^n$ are comeager for all $n \in \omega$. Then there is a perfect set $P \subseteq 2^{\omega}$ so that $[P]^n \subseteq C_n$ for all n.

\mathbb{R} is Strongly Jónsson

Theorem (AD, Holshouser/Jackson) \mathbb{R} is Strongly Jónsson.

\mathbb{R} is Strongly Jónsson

Theorem (AD, Holshouser/Jackson)

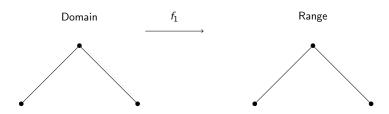
 \mathbb{R} is Strongly Jónsson.

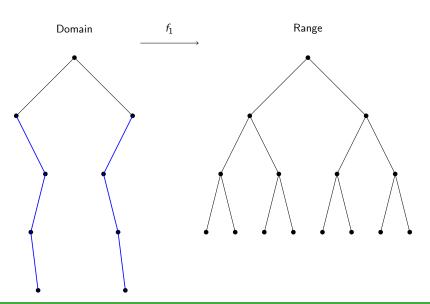
Proof.

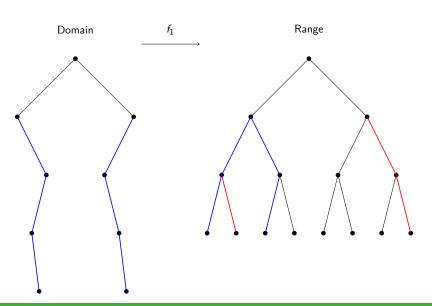
- We can break f into component functions, f_n .
- \triangleright Find comeager sets on which the f_n are continuous.
- ▶ Use the result of Mycielski[4] to thread a perfect set through the comeager sets.
- Use continuity and the fusion lemma to inductively thin out the range of the f_n .

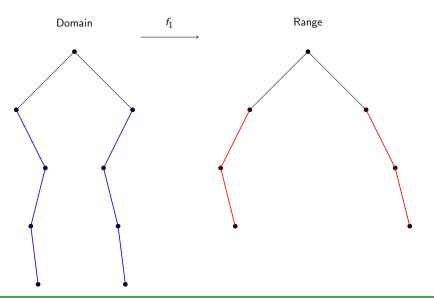
Domain f_1

Range









\mathbb{R} and Cardinals

Proposition (AD)

If $\kappa < \Theta$ is an uncountable cardinal, then (\mathbb{R}, κ) and (κ, \mathbb{R}) are Rowbottom.

Proposition (AD $+ V = L(\mathbb{R})$, Holshouser/Jackson)

Let $\kappa, \lambda < \Theta$ be uncountable cardinals. Suppose

$$A, B \in \{\kappa, \lambda, \mathbb{R}, \kappa \cup \mathbb{R}, \kappa \times \mathbb{R}, \lambda \cup \mathbb{R}, \lambda \times \mathbb{R}\}$$

Then (A, B) is a strong Jónsson pair.

\mathbb{R} and Cardinals

Proposition (AD)

If $\kappa < \Theta$ is an uncountable cardinal, then (\mathbb{R}, κ) and (κ, \mathbb{R}) are Rowbottom.

Proposition (AD + $V = L(\mathbb{R})$, Holshouser/Jackson)

Let $\kappa, \lambda < \Theta$ be uncountable cardinals. Suppose

$$A, B \in \{\kappa, \lambda, \mathbb{R}, \kappa \cup \mathbb{R}, \kappa \times \mathbb{R}, \lambda \cup \mathbb{R}, \lambda \times \mathbb{R}\}$$

Then (A, B) is a strong Jónsson pair.

What about other non-ordinal sets?

Describing More General Sets

Suppose $X \in L_{\Theta}(\mathbb{R})$. Then there is a surjection $F : \mathbb{R} \to X$. We can define an equivalence relation E on \mathbb{R} by

$$xEy \iff F(x) = F(y).$$

Note that X is in bijection with \mathbb{R}/E . So we only need to consider quotients of \mathbb{R} .

Jónsson Properties for General Quotients

There is a (possibly not unique) decomposition of \mathbb{R}/E into a well-ordered component and another component which \mathbb{R} surjects onto and injects into [2]. Call the surjection ϕ^X and the injection ϕ_X . Either of these components could be empty.

Jónsson Properties for General Quotients

There is a (possibly not unique) decomposition of \mathbb{R}/E into a well-ordered component and another component which \mathbb{R} surjects onto and injects into [2]. Call the surjection ϕ^X and the injection ϕ_X . Either of these components could be empty.

Theorem (AD +
$$V = L(\mathbb{R})$$
, Holshouser/Jackson)

Suppose that $X \in L_{\Theta}(\mathbb{R})$ is in bijection with $\kappa \cup A$, where κ is an uncountable cardinal and \mathbb{R} maps onto and into A. Similarly, suppose $Y \in L_{\Theta}(\mathbb{R})$ is in bijection with $\lambda \cup B$. Let $f : [\kappa \cup A]^{<\omega} \to \lambda \cup B$. Then there are perfect $P, Q \subseteq \mathbb{R}$ and there is an $H \subseteq \kappa$ with $|H| = \kappa$ so that

$$|\lambda - f[[H \cup \phi^A[P]]^{<\omega}]| = \lambda \text{ and } f[[H \cup \phi^A[P]]^{<\omega}] \cap \phi_B[Q] = \emptyset.$$

Jónsson Properties for General Quotients

There is a (possibly not unique) decomposition of \mathbb{R}/E into a well-ordered component and another component which \mathbb{R} surjects onto and injects into [2]. Call the surjection ϕ^X and the injection ϕ_X . Either of these components could be empty.

Theorem (AD +
$$V = L(\mathbb{R})$$
, Holshouser/Jackson)

Suppose that $X \in L_{\Theta}(\mathbb{R})$ is in bijection with $\kappa \cup A$, where κ is an uncountable cardinal and \mathbb{R} maps onto and into A. Similarly, suppose $Y \in L_{\Theta}(\mathbb{R})$ is in bijection with $\lambda \cup B$. Let $f : [\kappa \cup A]^{<\omega} \to \lambda \cup B$. Then there are perfect $P, Q \subseteq \mathbb{R}$ and there is an $H \subseteq \kappa$ with $|H| = \kappa$ so that

$$|\lambda - f[[H \cup \phi^A[P]]^{<\omega}]| = \lambda \text{ and } f[[H \cup \phi^A[P]]^{<\omega}] \cap \phi_B[Q] = \emptyset.$$

This is unsatisfactory as this result does not give us bijections.

Background for E_0

Recall the following:

Definition

Let $x, y \in 2^{\omega}$. Then xE_0y iff $(\exists N)(\forall n \geq N)[x(n) = y(n)]$.

Note that $2^{\omega}/E_0$ has no definable linear ordering and E_0 has no definable transversal.

Background for E_0

Recall the following:

Definition

Let $x, y \in 2^{\omega}$. Then xE_0y iff $(\exists N)(\forall n \geq N)[x(n) = y(n)]$.

Note that $2^{\omega}/E_0$ has no definable linear ordering and E_0 has no definable transversal.

The following is a corollary of the Glimm-Effros Dichotomy [1]:

Corollary (AD)

Suppose $H \subseteq 2^{\omega}/E_0$. Then H satisfies exactly one of the following:

- H is countable,
- ▶ H is in bijection with \mathbb{R} , or
- H is in bijection with $2^{\omega}/E_0$.

Mycielski for E_0

Definition

 $A \subseteq 2^{\omega}$ has **power E**₀ iff A is E_0 -saturated and A/E_0 is in bijection with $2^{\omega}/E_0$.

Definition

For $n \in \omega$ and $A \subseteq 2^{\omega}$, let

$$[A]_{E_0}^n = {\vec{x} \in [A]^n : |\{[x_1]_{E_0}, \cdots, [x_n]_{E_0}\}| = n}$$

Mycielski for E_0

Definition

 $A \subseteq 2^{\omega}$ has **power E**₀ iff A is E_0 -saturated and A/E_0 is in bijection with $2^{\omega}/E_0$.

Definition

For $n \in \omega$ and $A \subseteq 2^{\omega}$, let

$$[A]_{E_0}^n = {\vec{x} \in [A]^n : |\{[x_1]_{E_0}, \cdots, [x_n]_{E_0}\}| = n}$$

We were able to prove the following Mycielski style result.

Theorem (Holshouser/Jackson)

Suppose that $C_n \subseteq (2^{\omega})^n$ are comeager and E_0 -saturated for all $n \in \omega$. Then there is an $A \subseteq 2^{\omega}$ of power E_0 so that $[A]_{E_0}^n \subseteq C_n$ for all n.

\mathbb{R}/E_0 is Strongly Jónsson

Theorem (AD, Holshouser/Jackson)

 $2^{\omega}/E_0$ is strongly Jónsson.

\mathbb{R}/E_0 is Strongly Jónsson

Theorem (AD, Holshouser/Jackson)

 $2^{\omega}/E_0$ is strongly Jónsson.

Proof.

▶ We can lift $f: [2^{\omega}/E_0]^{<\omega} \to 2^{\omega}/E_0$ to a function $F: [2^{\omega}]^{<\omega} \to 2^{\omega}$ so that

$$\vec{a}E_0\vec{b} \iff F(\vec{a}) \in f(\{[b_1]_{E_0},\cdots,[b_n]_{E_0}\}).$$

- We can break F into component functions, F_n.
- Find comeager sets on which the F_n are continuous.
- Use the Mycielski-style result for E_0 to thread a power E_0 set through the comeager sets.
- ▶ Use continuity and the techniques of the Mycielski-style result to inductively thin out the range of the F_n .

Combinations

Proposition (AD + $V = L(\mathbb{R})$, Holsouser/Jackson)

Let $\kappa, \lambda < \Theta$ be uncountable cardinals. Suppose

$$A, B \in \{\kappa, \lambda, \mathbb{R}, 2^{\omega}/E_0, \kappa \cup \mathbb{R}, \kappa \times \mathbb{R}, \lambda \cup \mathbb{R}, \lambda \times \mathbb{R} \}$$
$$\kappa \cup 2^{\omega}/E_0, \kappa \times 2^{\omega}/E_0, \lambda \cup 2^{\omega}/E_0, \lambda \times 2^{\omega}/E_0 \}$$

Then (A, B) is a strong Jónsson pair.

Proposition (AD, Holshouser/Jackson)

Let $\kappa < \Theta$ be an uncountable cardinal. Then

- \triangleright $(2^{\omega}/E_0,\mathbb{R})$ is Ramsey,
- \triangleright $(2^{\omega}/E_0, \kappa)$ is Ramsey, and
- $(\kappa, 2^{\omega}/E_0)$ is Rowbottom.

Proposition (AD + $V = L(\mathbb{R})$, Holshouser/Jackson)

Suppose $\lambda, \kappa < \Theta$ are uncountable cardinals. Then

- $(\kappa \cup 2^{\omega}/E_0, \mathbb{R})$ is Rowbottom,
- if $cf(\kappa) = \omega$ and $\lambda < \kappa$, then $(\kappa \cup 2^{\omega}/E_0, \lambda)$ is Rowbottom, and
- \triangleright $(2^{\omega}/E_0, \kappa \cup \mathbb{R})$ and $(2^{\omega}/E_0, \kappa \times \mathbb{R})$ are Ramsey.

Further Work

- ► Can the result be extended to well-ordered unions of hyperfinite quotients of R?
- ▶ Do infinite partition properties hold for $2^{\omega}/E_0$?
- Can we get this Mycielski style result for other equivalence relations?
- Can the full Jónsson result be proved for general equivalence relations?

References I

- S. Gao.
 Invariant Descriptive Set Theory.
 CRC Press, 2008.
- [2] L. Harrington and S. Shelah. Counting equivalence classes for co- κ -suslin equivalence relations.

Logic Colloquium, 108, 1980.

[3] S. Jackson, R. Ketchersid, F. Schlutzenberg, and W. Woodin. Ad and Jónsson cardinals in $L(\mathbb{R})$.

Journal of Symbolic Logic, 79, 2014.

References II

[4] J. Mycielski. Independent sets in topological algebras. Fund. Math., 55, 1964.